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ABSTRACT: This paper addresses the elastic modulus associated with the radial interaction
between a slender axisymmetric reinforcing element and a matrix.  In particular, reinforcing
elements with a significant surface structure are considered, and the elastic modulus of an
interface model is defined to characterize the local elastic behavior resulting from the mechanical
interaction that is not explicitly captured at a larger scale of modeling (i.e., a scale at which the
surface structure is not explicitly modeled).  An analytical justification for the elastic modulus is
presented by determining the difference in the strain energy stored in a matrix that has a
homogenized (or smoothed) interface traction distribution versus a more concentrated traction
distribution that may occur with a complicated surface structure.  Due to the importance of strain
energy in driving cracks, it is postulated that the elastic modulus should be such that the
composite with an idealized interface will store the same amount of strain energy as the actual
composite having an interface with a surface structure.  Analytical results show that the elastic
modulus increases with the ratio of the contact area to the interface area and with a decrease in
the period associated with a periodic traction distribution.  A numerical example shows the effect
of the elastic modulus on the prediction of longitudinal cracking in a quasibrittle matrix.194
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1. INTRODUCTION

Interface descriptions of the mechanical interaction between two constituent materials of a
body are common in computational mechanics.  Often the characterization of this interaction
includes an elastic component.  For different applications the elastic component can be
interpreted in various ways, e.g. representing: (1) the elastic behavior of a thin layer of the more
compliant material (see e.g., Desai et al. [1]1984, and Desai and Nagaraj [2] 1986), (2) the elastic
behavior of a thin interphase region (see e.g., Chaboche et al. [3]) that has different material
properties than those of the constituent materials and is not otherwise represented in the model,
(3) the local elastic response associated with omitted geometric detail of the surface structure
(see e.g., Goodman et al. [4] 1968, and Herrmann [5] 1978, Plesha et al. [6] 1989, and
Stankowski et al. [7]1993), and (4) a penalty parameter used to enforce a compatibility constraint
(see e.g., Herrmann [5] 1978, and Oden and Campos [8] 1981).  This last interpretation reflects
that for some classes of problems the elastic moduli of the interface lack a physical
interpretation.

This paper will focus on the third case, justification for elastic moduli when the interface has a
significant surface structure1.  Local response has been used to argue the need for elastic moduli
associated with interface models, and reversible deformation of the contact zone has been
experimentally measured for some applications (see e.g., Goodman et al. [4] 1968).  However
partially because the surface structure associated with many interface problems has a random
structure (e.g., when the surface structure is associated with the roughness of an interfacial crack
face), analytical results for elastic moduli appear to be lacking.  This paper gives an analytical
justification for an elastic modulus that characterizes average local behavior which is not
explicitly captured at a larger scale (e.g., at a scale that might be used to model the matrix and
reinforcing element numerically).  We will examine a particular problem in which a slender
axisymmetric reinforcing element can be idealized as (1) being stiff relative to the matrix and (2)
having a periodic surface structure.  While several simplifying assumptions are made for the
analysis presented here, the general approach is applicable to a larger class of problems.

This study appears to be unique in: (1) its direct examination of the effects of a varying
interface traction and (2) the characterization of the strain energy associated with the variation of
the interface traction via the elastic modulus of an interface model.  The study was motivated by
computational modeling at a scale where the reinforcing element and matrix are modeled as
solids; example computational analyses of composite materials at this scale include those of
Chaboche et al. [3] Schellekens and de Borst [9], Tsai et al. [10] 1990, and Walter et al. [11].
Most studies on elastic moduli in composites having an interphase or imperfect interaction
between the two phases have sought to determine the effective elastic moduli of an interphase
region of finite thickness (see e.g., Ko et al. [12], and Navard and Keller [13]) or the effective
elastic moduli of the complete composite (see e.g., Aboudi [14], Achenbach and Zhu [15],
Benveniste [16], Hashin [17], Theocaris et al. [18], and the review of Jayaraman et al. [19]).  In
contrast, the elastic modulus (for an interface model) sought in this study was motivated by
attempts to model failure of the mechanical interaction along an interface.  While this paper

                                                
1 Surface structure refers to the deviation of the actual geometry from that of the idealized model.  For example, an
idealized model might represent a reinforcing element as a circular cylinder.  The surface structure in this case would
be the portion of the actual reinforcing element that deviates from the idealized shape.  The surface structure is
referred to as being significant if it can produce significant mechanical interaction when forces occur along the
interface.
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addresses the radial (normal) component of the elastic interaction, the approach presented could
also be used to examine the increased tangent compliance along a material interface due to
imperfect interaction.

The physical problem that motivated this analytical study is that of the mechanical interaction
between reinforcing bars (steel and fiber-reinforced-polymer[JVC1]) and a concrete matrix (Figure
1).  These reinforcing elements have a fabricated surface structure (often idealized as being
periodic) that can produce a complicated interface traction distribution, in part because of a
reduction in the contact area after the propagation of an interfacial crack.  Both physical and
analytical evidence exists for the variation of interface tractions.  Experimental studies (see e.g.,
Goto [20] and Jiang et al. [21]) have shown that local failure of the concrete initiates at the ribs
on the surface of the bars.  Numerical studies that explicitly model the surface structure (see e.g.,
Ozbolt and Eligehausen [22] and Reinhardt et al. [23]) have also demonstrated the concentration
of tractions near the ribs on the bars.  One scale of computational analysis for these types of
problems (see e.g., Cox and Herrmann [24,25]) does not explicitly model the surface structure of
the bar; rather the bar is modeled as a cylindrical solid.  At this scale the effects of the local
mechanical interaction must be accounted for indirectly, e.g., in an interface idealization.  The
same approach can be used for other composite materials in modeling the mechanics of misfit
conditions arising from nonuniformity of the diameter of a reinforcing element (see e.g.,
[JVC2]Parthasarathy et al. [26]).  This nonuniformity could be due to roughness that has a
“characteristic wave length,” (see e.g., reference) or a fabricated surface structure such as serrated
fibers (see e.g., reference).  However, there are many cases for which the effects of the “variation
of the interface traction” are less likely to be of practical significance; e.g., the results presented
later indicate that the effects of this variation decrease with a decrease in the “characteristic wave
length.”

When the surface structure of a reinforcing element is significant, the mechanical interaction
associated with the corresponding misfit can be the most important contribution to the so called
“bond behavior.”  Furthermore, this mechanical interaction can produce significant radial
tractions at the interface (especially following the propagation of an interfacial crack).  While
experimental data (such as pull-out or push-out tests) may give an indication of the elastic
response corresponding to the axial displacement of the reinforcing element, experimental data
on the radial elastic response is often lacking; yet the radial elastic response can be important in
computational predictions of composite behavior.  For example, with reinforced concrete the
radial traction component developed between the bars and concrete can produce longitudinal
cracking that fails the system (see e.g., Tepfers [27]1979, and Cox 1997).  The need to further
examine the radial response was apparent in some of the validation problems for a bond model
developed by Cox and Herrmann [28,25].  A preliminary study [29](Cox 1996) investigated the
potential of including elastoplastic coupling in a bond model to account for the change in radial
elastic response with differing contact conditions, but an analytical basis for the model was
lacking.  More recent applications of the model have addressed FRP reinforcement [30].

This paper focuses on the radial elastic response attributed to an interface idealization when the
actual traction distribution along the interface is assumed to be axisymmetric and nonuniform
(but periodic) in the axial direction.  While the actual traction distribution will not generally
satisfy these assumptions, these idealizations of the actual problem can allow analytical results to
be obtained that yield significant insight.  Furthermore, the analytical solution can be applied as a
first order approximation when these assumptions are not strictly true.[JVC3]

The paper is organized as follows: the first section presents the simplifications that lead to the
underlying analytical model; the second section presents the analytical solution; the third section
shows how the analytical solution may be used to determine an equivalent elastic modulus of the
interface idealization and presents analytical and numerical results; the fourth section presents an
example to demonstrate the effect of the model on predicting longitudinal cracking in a
quasibrittle matrix; and the fifth section presents a brief discussion and conclusions.  The
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emphasis of the paper is upon determining an analytical expression for the elastic modulus of the
interface model.

2. ANALYTICAL MODEL

The interface idealization of bond can be described in terms of two simplifications.  The first is
the homogenization of the interface traction distribution and the simplification of the interface
geometry.  Figure 2 presents close-up views of sections (constant θ) from an axisymmetric
surface structure and the corresponding idealization that eliminates the detail of the surface
structure.  A cylindrical coordinate system is assumed with the z-axis corresponding to the axis
of the bar.  Figure 2a presents a schematic of the radial component of the interface traction
(shown on the matrix) between the reinforcing element and the matrix for a unit surface element.
The unit surface element consists of the complete interface surface for one cycle of the surface
structure.  The length of the unit surface element is denoted by sr.  Figure 2b presents a schematic
of the normal component (shown negative) of the interface traction between the reinforcing
element and matrix for the interface idealization.  The interface idealization will yield a
continuous traction distribution, that is smoother than the actual traction distribution.  For
example, the uniform distribution of σ shown in Figure 2b (the “macroscopically homogeneous”
case) would be the interface idealization of a periodic traction distribution as depicted in Figure
2a for a single interval.  In conjunction with the simplification of the traction distribution, the
actual surface geometry is also idealized as a cylindrical surface.  Though not depicted in Figure
2, the actual interface geometry can change with material damage.  In general, the homogenized
stress is defined so that the average of each traction component in a cylindrical coordinate system
is the same; for example

2πr σ z( )
0

sr

∫ dz = − Tr z,θ( )
A∫ dA (1)

where A denotes the actual area of the unit surface element, and Tr denotes the radial component
of the actual interface traction.  As previously discussed, for the idealized problem considered
here Tr is assumed to be axisymmetric and periodic; thus Tr is only a function of z, and σ is
uniform.

The second simplification, unique to interface idealizations, addresses the kinematics of a unit
cell of the matrix adjacent to the interface (sometimes called the bond zone).  Figures 2c and 2d
give schematics of the deformation of the actual unit cell versus the deformation of the same unit
cell for the interface model (again depicted for the “macroscopically homogeneous” case).  δn
denotes the elastic extension of the interface (Figure 2d denotes a negative value), and D

e
 is the

corresponding elastic modulus which satisfies
σ = Deδn (2)

point-wise.  For the two unit cells, note the difference in the distribution of the radial
displacement.  The elimination of the surface structure and the corresponding traction
concentrations – the first simplification – produce a different response in the matrix, even for a
“perfect matrix model.”  While inelastic response can still occur with the interface idealization,
the omission of the surface structure (which results in a less concentrated traction distribution) is
likely to initially produce less inelastic response that is more distributed in the z-direction.

Now consider the idealizations that define the problem that will be solved analytically.  The
actual problem might have a geometry as depicted in Figure 2c.  We adopt a cylindrical
idealization of the surface geometry and project the actual tractions onto the cylindrical surface
(accounting for the change in area).  Furthermore, we assume: (1) a macroscopically
homogeneous traction state (i.e., σ is uniform), and (2) that the corresponding actual tractions
vary periodically over the length of the unit surface element (sr) and are evenly (or
symmetrically) distributed about the center of each unit surface element.  Boundary conditions
are assumed such that we can consider the behavior of a single unit cell of a cylindrical domain
as depicted in Figure 3.  (Alternative boundary conditions will be discussed later.)
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For problem a the elastic properties of the unit cell (C') are the effective elastic properties that
include the effects of microcracks developed during loading, which would generally produce an
inhomogeneous and anisotropic elastic solid at the mesoscale.  (Even this rather general
idealization includes the constraint that the spatial distribution of the material properties are
symmetric about the center of the cell.)  For the next level of idealization, problem b, the elastic
properties are assumed to be homogeneous and isotropic.  An “auxiliary problem,” to either
problem a or b, is defined in Figure 3c, where

tndz = tnLt
-sr/2

sr/2

(3)

(i.e., the tractions are said to be “statically equivalent”) but an additional measure of “problem
equivalence” must still be defined.  tn and Lt are the equivalent traction and contact length,
respectively.  (After we fully define “problem equivalence”, it will be clear that the values of tn
and Lt would differ for “equivalent” auxiliary problems to problems a and b.)  In concept
problem a is closest to the actual problem, but effects of microcracking in the matrix are not
considered in this study.  The effect of the traction distribution will be considered, but since it is
generally unknown it is usually sufficient to consider problem c.  By proper definition of the
elastic modulus, the interface idealization depicted in Figure 3d will also be an “equivalent
auxiliary problem.”  In this case we have that

σsr = tnLt (4)
We will now consider measures of equivalence for the auxiliary problems.  By Equations (3)

and (4) problems b, c, and d are equivalent in a Saint-Venant sense (see e.g., Sokolnikoff
[31]1956), assuming that for problem d De→∞ (i.e., when the elastic interface model is omitted).
This measure of equivalence does not uniquely define tn and Lt.  (This first measure of problem
equivalence is analogous to defining macroscopic stresses in terms of volume averages in a
continuum.)   and it can not address how problems a and d could be “equivalent,” since the two
domains do not have the same material properties.  An additional measure of “problem
equivalence” (beyond “static equivalence” of the tractions) is needed.  In particular, we seek to
equate some measure of the response of the two models.  For example, we first considered
models that would have the same average radial displacement along the interface.  It is a fairly
simple exercise (see Appendix A) to show that the average radial displacements of problems b, c
and d are the same when De→∞.  However, the additional measure of “problem equivalence”
should address the physical aspects of the problem that are important to retain with the
homogenization of the interface tractions.  As previously noted, in some cases the elastic
response is very important in bond models toward the accurate prediction of matrix or interface
cracking.  Since the elastic energy stored in the material can be released to drive cracks, we will
define the additional measure of “problem equivalence” as: two “equivalent problems” will store
the same amounts of elastic strain energy in their domains.  Thus the key to determining De is the
solution of problems b through d.  If we solve problem b, we can obtain an analytical solution for
the elastic modulus and examine its dependence upon the traction distribution.  (This second
measure of problem equivalence is analogous to using energy-based approaches to determine
effective elastic moduli of a continuum (or their bounds), but in this case the “effects are lumped
to the interface.”)

Focusing on the elastic response of the matrix to determine the elastic modulus associated with
the mechanical interaction neglects the strain energy of the reinforcement.  That is, “statically
equivalent” traction distributions will also result in different amounts of strain energy stored in
the reinforcing element.  Thus, the following theoretical development is applicable when the
elastic modulus of the reinforcement is much larger than that of the matrix; otherwise, it only
presents half of the solution, since the solution for the reinforcement subjected to a periodic
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normal traction should also be included.*  Furthermore, the surface structures of some
reinforcements could undergo significant deformation not accounted for in the solution presented
here.

Determination of the effective elastic modulus of the interface has similarities with continuum
damage mechanics which provides a mesoscopic description of the mechanical behavior of a
microcracked solid.  A simple definition of damage in a solid for the one-dimensional case is the
effective surface density of microdefects (see e.g., Lemaitre [32]1992).  One can view the change
in elastic behavior attributed to an interface surface in a similar manner.  Note that tn and Lt  are
analogous to the effective stress and effective area of continuum damage mechanics for a solid
[33](Kachanov 1958), and in an analogous manner generally Lt ≠Lt – the difference in the
general case being due to local damage of the matrix and the distribution of traction.
Furthermore the relationship between the effective stress and homogenized stress (σ) can be
written as

tn = σ
1–D (5a)

where

D = 1–  Lt
sr

(5b)

Rather than postulating the applicability of a principle such as the strain equivalence principle
[34](Lemaitre 1971)[JVC4], we will analytically determine how the elastic modulus varies with D
by maintaining the same amount of elastic strain energy that exists with the “actual traction
distribution.”  (For this problem, it is more natural to express the solution in terms of the fraction
of the surface in contact, Lt/sr=1–D.)

3. ANALYTICAL SOLUTION

3.1 Governing Equations

The governing equations for the axisymmetric problem are as follows.  Equilibrium is governed
by

∂σrr

∂r
+

∂σrz

∂z
+σrr–σθθ

r  = 0
,

∂σrz

∂r
+

∂σzz

∂z
+σrz

r  = 0
, (6a,b)

and σij=σji.  The linear strain-displacement relationships are given by

εrr = 
∂ur

∂r ,
εθθ = ur

r , εzz  = 
∂uz

∂z
(7a,b,c)

εrθ = 0, εrz = 1
2

∂uz

∂r
+

∂ur

∂z ,
εθz = 0, (7d,e,f)

and the constitutive relationship for linear isotropic elasticity can be written as
σrr = λϑ +2µεrr,   σθθ = λϑ +2µεθθ,   σzz  = λϑ +2µεzz ,   σrz = 2µεrz (8a-d)

where ϑ  = εii , and λ and µ are Lamé's constants.  The boundary conditions are given by
uz z =− sr 2 = uz z = sr 2 = 0 , σrz z = −sr 2 = σ rz z =sr 2 = 0 (9a,b)

σrr r= ri
= t , σrz r= ri

= 0 (9c,d)

                                                
*  The simpler case is shown here for brevity; effects of the deformation of the reinforcement will be presented in the
dissertation work of the second author.



Draft: September 19, 2000, 3:30 PM

7 Cox/Yu

σrr r= ro
= 0 , σrz r= ro

= 0 (9e,f)

where t denotes a generic distribution of traction normal to the surface (i.e., it may represent
either tn or tn).

3.2 Solution

Due in part to the symmetry of the problem defined over a unit cell, the solutions for ur and uz
are even and odd functions of z, respectively.  The solution will be obtained in a manner similar
to the Levy solution for simply supported plates [35] (Timoshenko and Woinowsky-Krieger
1959).* The nonzero displacement components are written in terms of orthonormal bases for
square integrable even and odd functions of z as

ur r,z  = νrn r Φcn z•
n=0

∞

, uz r,z  = νzn r Φsn z•
n=1

∞

(10a,b)

where

Φcn z  = 
1
sr

, n=0

cos zωn

sr/2
, n>0

, Φsn z  = 
sin zωn

sr/2
, ωn = 2πn

sr
(10c-e)

Since these are orthonormal bases for the variation of the functions in z for a fixed r, the
coefficient functions are just projections of the solution onto each basis function, i.e.,

νrn r  = ur r,z ,Φcn z , νzn r  = uz r,z ,Φsn z (11a,b)

where a,b = abdz
− sr 2

sr 2

∫ .  These coefficient functions can be found by projecting the governing

equations onto the basis functions.  For the equilibrium equations this can be written as

Φcn,
∂σrr

∂r
+

∂σrz

∂z
+σrr–σθθ

r  = 0
,

Φcn,
∂σrz

∂r
+

∂σzz

∂z
+σrz

r  = 0
(12a,b)

Φsn ,
∂σrr

∂r
+

∂σrz

∂z
+σrr–σθθ

r  = 0
,

Φsn ,
∂σrz

∂r
+

∂σzz

∂z
+σrz

r  = 0
(12c,d)

The left sides of Equations (12b) and (12c) are identically zero since in both cases one factor in
the inner product is an odd function and the other factor is an even function of z.  Substituting the
constitutive Equations (8) and strain-displacement relationships (7) into Equations (12a) and
(12d) gives two equations for the displacement components (for n>0).  Then using the
orthonormality of the bases and Equations (11), we obtain the following set of coupled ordinary
differential equations for νrn and νzn  (n>0)

-νrn µωn
2 + a

r2
+ dνrn

dr
a
r + d

2νrn

dr2
a + dνzn

dr
bωn = 0

-νrn
bωn

r – dνrn

dr
bωn -νzn aωn

2 + dνzn

dr
µ
r + d

2νzn

dr2
µ = 0

(13a,b)
where a= λ+2µ and b= λ+µ .  By the same methodology, for the case of n=0, Equation (12a)
gives

                                                
* A related numerical solution for a ring stiffened shell rocket booster was previously given by Herrmann and
Tamekuni [36]1965.  Kurtz and Pagano [37] used stress functions to examine the deformation of a fiber within a
matrix and referenced several analytical solutions using the same approach to solve related problems.
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d2νr0

dr2
+1

r
dνr0
dr

–νr0

r2
 = 0 (14)

Taking the derivative of Equation (13b), multiplying it by a/(bωn), and adding it to Equation
(13a), gives the following relationship for νrn

νrn = a
bωn

3

d3νzn

dr3
+1

r  d
2νzn

dr2
 – 1

r2
 dνzn

dr
– a+b

bωn

dνzn
dr

(15)

Substituting this into Equation (13b) gives a fourth order ordinary differential equation that can
be shown to be of the form

Ln (Ln (vzn )) = 0 (16)
where Ln is the differential operator given by

Ln =
d2

dr2 +
1
r

d
dr

−ωn
2 (16b)

The change of variables y=ωnr  allows Ln to be expressed as the modified Bessel operator of
order 0:

Ln = y2 d2

dy2 + y
d
dy

− y2
(17)

(The dependence of Ln upon n is not explicitly shown since it enters through the definition of y.)
By employing the following properties of the modified Bessel functions of the first and second
kinds:
Ln I0 y( )[ ]= 0, Ln K0 y( )[ ]= 0, Ln yI1 y( )[ ]= 2ωn

2 I0 y( ), Ln yK1 y( )[ ]= −2ω n
2 K0 y( )

the solution of each coefficient function can be expressed in the form

vr 0 (r) = c10r + c20

1
r

(18a)

vrn (r) = −c1n I1(ωnr) + c2nK1(ωnr) + c3n 4(1 −ν )I1(ω nr) − ωnrI0 (ωnr)[ ]
                                                   + c4n 4(1− ν)K1(ωnr) +ωnrK0 (ω nr)[ ]

(18b)

vzn(r ) = c1n I0(ωnr) + c2nK0(ωnr) + c3nωnrI1(ωnr) + c4nω nrK1(ωnr) (18c)
Now with the general form of the solution for the displacements, the solution for the stress field
can be obtained.  For this study, only the σrr and σrz components are needed to address the
boundary conditions and to determine De.  Combining the strain-displacement relations (7), the
constitutive Equations (8), and solution for the displacements (10, 18), the stress components can
be expressed as

σrr = σ n
n=0

∞
∑ (r )Φcn (z) , σrz = τn

n=1

∞
∑ (r)Φsn(z) (19a,b)

where
σ0(r) = σc

10
c10 + σc

20
c20 (20a)

σn(r) = 2µ σc1n
c1n +σ c2 n

c2n +σ c3n
c3n +σc4 n

c4n( ) (20b)

τn(r) = 2µ τc1n
c1n +τ c2 n

c2n +τ c3n
c3n +τc4 n

c4n( ) (20c)
and

σc
10

= 2 λ + µ( ), σc20
= −2µ r2 (21a,b)

σc1 n
= −ωn I0 ωnr( )+ I1 ω nr( ) r , σc2 n

= −ωnK0 ωnr( )− K1 ωnr( ) r (21c,d)

σc3n
= 3 − 2ν( )ωnI0 ωnr( )− 4 1− ν( ) I1 ωnr( ) r −ωn

2rI1 ωnr( ) (21e)
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σc4 n
= − 3 − 2ν( )ωnK0 ωnr( )− 4 1 −ν( )K1 ωnr( ) r − ωn

2rK1 ωnr( ) (21f)

τc1 n
= ωnI1 ωnr( ), τc2 n

= −ωnK1 ωnr( ) (22a,b)

τc3n
= ωn

2rI0 ωnr( )− 2 1−ν( )ωnI1 ωnr( ) (22c)

τc4 n
= −ωn

2rK0 ωnr( )− 2 1 −ν( )ωnK1 ω nr( ) (22d)

(For Equations (21c) through (22d), n>0.)
Projecting the boundary conditions (9c-f) and using Cauchy’s relationship between traction and
stress components gives the following Equations for the unknown coefficients

Φcn ,σ rr r = ri

= Φcn, t Φsn,σrz r =ri

= 0 (23a,b)

Φcn ,σ rr r = ro

= 0 Φsn,σrz r =ro

= 0 (23c,d)

Equations (19-22) and the properties of the basis functions allow these equations to be expressed
as

σc10 r=ri
σ c20 r= ri

σc10 r=ro
σ c20 r= ro

 

 
 

 

 
 

c10

c20

 
 
 

 
 
 

=
α0

0
 
 
 

 
 
 

(24a)

σc
1 n

r=r
i

σc
2 n

r=r
i

σ c
3 n

r=r
i

σc
4 n

r=r
i

σc
1 n

r=r
o

σc
2 n

r=r
o

σ c
3 n

r=r
o

σc
4 n

r=r
o

τc
1 n

r=r
i

τc
2 n

r=r
i

τ c
3 n

r=r
i

τc
4 n

r=r
i

τc
1 n

r=r
o

τc
2 n

r=r
o

τ c
3 n

r=r
o

τc
4 n

r=r
o

 

 

 
 
 
 

 

 

 
 
 
 

c1n

c2 n

c3n

c4 n

 

 
 

 
 

 

 
 

 
 

=

αn 2µ( )
0

0

0

 

 
 

 
 

 

 
 

 
 

(24b)

where the α’s are the coordinates of t in the Φc basis, i.e.,
αn = Φcn ,t (25)

The solution of Equation (24a) gives

c10 =
α 0ri

2

2(λ + µ) ri
2 − ro

2( ) c20 =
α0ri

2ro
2

2µ ri
2 − ro

2( ) (26a,b)

Solving Equation (24b) for each n>0 gives the remaining unknown coefficients, thus completing
the solution for both the displacement and stress fields.  While the exact solution to this linear
system of equations can be expressed analytically, the expression is omitted for brevity.

3.3 Verification

The mathematical correctness of the above solution was evaluated using symbolic
manipulation and by examining the predicted solution for three problems.  The first problem
simply verified that the solution reduces to the classical solution for a thick-walled cylinder
subjected to a uniform traction over the unit cell.  For this case t is proportional to Φc0 thus αn=0
for all n>0.  The solution then follows directly from Equations (26).

In the second problem, we examine the form of the solution for an arbitrary t when ro→∞.  The
properties of the modified Bessel functions of the first and second kind imply that as r→∞
σc1n

,σc 3n
,τc1n

,τc 3n
→ ∞  and σc2 n

,σc 4n
,τc 2n

,τc 4n
→ 0 , respectively.  Thus, by Equations (24),

bounding the solution “at infinity” implies that c1n= c3n =0 for all n.  Equations (24) then reduce
to

σ c20 r = ri( )c20 = α 0 (27a)
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σc
2 n

r=r
i

σ c
4n

r =r
i

τc
2 n

r=r
i

τ c
4n

r =r
i

 

 
 

 

 
 

c2n

c4 n

 
 
 

 
 
 

=
αn 2µ( )
0

 
 
 

 
 
 

(27b)

for which the solution is given by

c20 =
−α0ri

2

2µ
(28a)

c2 n =
αnri −ωnriK0 ωnri( )− 2 1− ν( )K1 ωnri( )[ ]

2µA ωnri( )
n>0 (28b)

c4 n =
α nriK1 ωnri( )
2µA ωnri( )

n>0 (28c)

where

A ωnri( )= ωn
2ri

2 K0
2 ωnri( )− K1

2 ωnri( )[ ]− 2 1 −ν( )K1
2 ωnri( ) (29)

The coefficient functions for the displacement and stress components (n>0) are then given by

vrn (r) =
αnri −ωnriK0 ωnri( )K1 ωnr( )+ ωnrK1 ω nri( )K0 ωnr( )+ 2 1− ν( )K1 ωnri( )K1 ωnr( )][

2µA ωnri( )
(30a)

vzn(r ) =
α nri −ω nriK0 ωnri( )K0 ωnr( )+ ωnrK1 ωnri( )K1 ω nr( )−[ 2 1 −ν( )K1 ωnri( )K0 ωnr( )]

2µA ωnri( )
(30b)

σn r( ) = αnωnri ωnriK0 ωnri( )K0 ωnr( )+ riK0 ωnri( )K1 ωnr( )/ r − K1 ωnri( )K0 ωnr( )[
−2 1 −ν( )K1 ωnri( )K1 ωnr( )/ ωnr( )−ωnrK1 ωnri( )K1 ωnr( )]

A ωnri( )
(30c)

τn r( ) =
αnωnri ωnriK0 ωnri( )K1 ωnr( )− ωnrK1 ωnri( )K0 ωnr( )[ ]

A ωnri( )
(30d)

While these results were derived for an infinite domain, they are also useful for obtaining
accurate approximations of finite domain problems.  Application of the general solution
previously derived for finite domains, requires the solution of Equation (24b) for each n>0.
While all of the terms of the matrix remain bounded for a finite domain, the difference in the
asymptotic behavior of modified Bessel functions of the first and second kinds can result in
coefficients which vary by many orders of magnitude (e.g., differing by a factor of 10-10) – the
smaller coefficients being those multiplied by terms that include modified Bessel functions of the
first kind.  Even the associated product terms (e.g., σc1n

c1n ) can be many orders of magnitude
smaller (e.g., differing by a factor of 10-6) than those associated with modified Bessel functions
of the second kind.  The dominance of the terms associated with functions of the second kind
increases with n and ro/ri, and tends to result in increasingly ill-conditioned linear systems of
equations.  Thus for the problems that motivated this study (ro/ri>4), the solution for infinite
domains is accurate for n>0.  (This observation will be further demonstrated in the next section.)
Hailing verify all of this.  Hailing didn’t feel this detail was necessary, but without it I’m
concerned that equations (24 may be misapplied.
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The last verification problem compares numerical results obtained from the above solution to
those obtained from a finite element (FE) analysis of a unit cell.  The unit cell corresponds to a
concrete bond specimen [38] Malvar (1992) with the following properties: ri = 9.525 mm, ro =4
ri, Lt=1.587 mm, sr=12.8 mm, E=38700 MPa, and ν=0.17.  The normal traction is uniform with a
magnitude of sr/Lt MPa (i.e. corresponds to σ=1 MPa).

Figure 4 shows the comparison of displacement components (ur and uz) along r and z
coordinate directions for all of the solutions.  Two solutions using the analytical expressions are
shown to indicate the extent of convergence.  The finite element solution used 392 bilinear
quadrilateral elements graded more finely near the applied traction.  While the finite element
mesh is not sufficient to capture the [JVC5]discontinuity in εzz near the edge of the load (Figure 4a),
its overall agreement with the analytical solution suggests that the analytical solution is correct.

Figure 5 shows the FE predicted distribution of σrr for one half of the unit cell.  Clearly the
difference in response between the actual and homogenized traction is very local; this behavior is
consistent with the previous observation – that for n>0 (the terms associated with the local
response) the solution is not sensitive to ro for the problems that motivated this study.  The extent
of the local response also gives an indication of the minimum “fiber spacing” for which the
analysis is applicable to.  With an analytical solution, we can now return to the problem of
determining an expression for the elastic modulus associated with the interface – a direct
consequence of the local behavior.

4. ELASTIC MODULUS

4.1 Formulation

We previously defined equivalent problems as those that store the same amount of elastic energy
and have “statically equivalent” traction distributions.  The strain energy stored in an elastic unit
cell is equal to the work done by the traction t.  Therefore, we can simply use the analytical
solution to compute the work done by the interface tractions in problems b and d, and then equate
them to determine an expression for De.  The work done by the tractions in problem b is given by

Wb = −πri t z( )ur−sr / 2

s r / 2

∫ ri , z( )dz

= −πri αnν rn ri( )
n =0

∞

∑
(31)

where the last relationship uses the expressions for both factors of the integrand in terms of the
Φc basis and exploits the orthonormality of the basis.  Using the definition of the elastic modulus
(2), the work done by the tractions in problem d is given by

Wd = πrisr( )σ −ur ri( )+ δn[ ]
= πrisr( )σ −ur ri( )+ σ De[ ]

(32)

where, by Equations (11) and (3),

σ =
1
sr

t z( )
−sr / 2

sr / 2

∫ dz (33)

(Note that the notation ur(r) unambiguously refers to the radial displacement for problem d, since
the displacement for problem b also varies with z.)  Equating the work in the two systems gives

De =
srσ

2

srσur ri( )− αnνrn ri( )
n =0

∞

∑
(34)
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By the definitions of σ and Φc0, α0 = σ sr .  Furthermore, as shown in Appendix A, the average
radial displacement for “statically equivalent” traction distributions is the same.  Thus, we also
have the relationship that νr 0 ri( )= ur ri( ) sr .  The expression for the elastic modulus can be

simplified to

De =
srσ

2

− α nν rn ri( )
n=1

∞

∑
(35)

Now let us examine the dependence of the elastic modulus upon Young’s modulus (E) and the
diameter of the reinforcing element (df).  To do so, it will be convenient to express νrn(ri) in the
symbolic form – note ωnro was eliminated due to its linear dependence

νrn ri( )=
α nrih ωnri ,ri ro ,ν( )

E
(36)

where h is a dimensionless function.  This form follows from Equations (18-24); a simpler
version of this form is readily apparent in the solution for the special case when ro→∞, Equations
(30a,c).  The elastic modulus can now be expressed as

De =
2E

−d f

αn

α0

 

 
  

 
 

2

h ωnri ,ri ro ,ν( )
n =1

∞

∑
(37)

where df denotes the diameter of the “fiber” (2ri).  Assume that the geometry of the surface
structure scales with df.  Furthermore, assume that (for a given load level) the scaling of the
surface structure geometry will scale the traction distribution accordingly.  Then both αn/α0 and
ωnri  are independent of df.  If ro is sufficiently larger than the range of ri to be considered (i.e.,
the solution for the infinite domain case is sufficiently accurate), then De is inversely proportional
to the diameter of the reinforcing element.  As expected the elastic modulus varies
proportionately with Young’s modulus of the matrix, but the variation with Poisson’s ratio is
complicated.

The denominator of Equation (37) gives a direct measure of the effect of having a nonuniform
traction distribution.  As previously noted, the zero terms of Equations (10a) and (19a) give the
response of the unit cell for a uniform traction distribution.  All of the other terms in the series
expansions account for the deviation from a uniform distribution.  Furthermore, the
orthonormality of the basis functions implies that the contributions of the other terms (n>0)
correspond to traction components that are “statically equivalent to a zero traction.”  Thus in a
Saint-Venant sense, these other terms represent the local response.

Alternative boundary conditions to those defined by Equations (9) (Figure 3) could also be
considered.  One alternative is to allow the unit cell to exhibit uniform axial displacement along
the sides (z=±sr/2).  It can be shown by superposition that while the solution of the boundary
value problem differs, the value for the elastic modulus does not change.  A second alternative is
to include a normal traction on the outer surface (σo) of the unit cell (r=ro).  For this case,
Equations (31) and (32) must include the work done by σo.  Using reciprocity and superposition
one can show that if σo is a constant, then again the elastic modulus is the same as that calculated
from the original boundary conditions; when σo is not a constant, Saint-Venant’s principle
indicates that the effect of σo upon De will decrease with an increase in ro.  (The effects of ro are
considered in the subsection below.)

Generally the interface traction distribution is an unknown, but the emphasis here is not upon
the direct application of Equation (37).  In some cases (e.g., if one could estimate a contact area
based upon a known surface structure) one could use Equation (37) to estimate De for an analysis
where it would be treated as a constant.  As previously discussed there is also motivation in some
applications to consider the effects of changing contact conditions on the elastic response even
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though there are also several uncertainties.  The analysis does provide qualitative insight on the
effects of imperfect contact conditions.  We will briefly consider factors that affect the elastic
modulus, including: (1) contact length, (2) traction distribution, and (3) unit cell length (sr).

4.2 Results

Most of the following results are presented in a nondimensional form and thus are not tied to a
particular application.  The parameters that define the problem are given by: ro /ri =4, sr/ri =1.34,
and ν=0.17 (unless indicated otherwise).

Figure 6 shows the variation of the elastic modulus with respect to contact length and for two
different traction distributions over Lt (uniform and cosine).  (Over the contact length, the cosine
distribution is given by t(z)=tmaxcos(zπ/Lt), where tmax denotes the maximum traction value.)
These analytical results support the postulate[JVC6] that the compliance of the interface should
increase with a reduction in the contact length.  The results also indicate that the effect of the
traction distribution decreases with the contact length.  As previously noted, since both the
contact length and traction distribution are unknown it may be simpler to consider an equivalent
system that has a uniform traction distribution over the effective contact length.  Equivalent
systems will store the same amounts of elastic strain energy, and thus will have the same elastic
modulus.  As an example (see the “box” on Figure 6), a cosine distribution with a contact length
of sr/2 will have an equivalent contact length of about 0.38sr, which is intuitively consistent with
the cosine distribution being more concentrated (for a fixed Lt) than a uniform distribution
associated with the same “radial force.”

For the uniform traction distribution over the contact length, De→∞ as Lt→sr , since problems
c and d are the same under these conditions.  In contrast, for the cosine traction distribution De

approaches a constant value for full-contact conditions.  That is, even if full contact exists along
the interface, any homogenization of a nonuniform traction distribution requires a finite elastic
modulus for the interface if the two systems are to store the same amount of elastic strain energy.
Also note that the effective contact length has a length less than the unit surface element.

To incorporate the dependence of De upon the effective contact length into a bond model
requires the contact length to be related to other variables in the model.  These relationships may
include the effects of local material damage upon the effective contact area; thus they are
application specific, and not within the scope of this study.  (A model that relates the contact
length to other model variables was recently combined with the analytical results presented here
[39][Cox and Yu 1998] in the context of concrete modeling and significantly improved the radial
response of a bond model.)

Figures 7 through 10 examine the effects of some of the other parameters upon the elastic
modulus of the interface.  Figure 7 shows the relative insensitivity of the solution to Poisson’s
ratio.  Figure 8 shows that for this case the infinite domain solution is relatively accurate for
ro/ri>2, suggesting that it is “applicable” when the reinforcement is separated by a distance of df.
Figure 9 shows the variation of the elastic modulus with respect to changes in both sr and Lt.  The
intersect of the two curves corresponds to the last verification problem (results shown in Figure
5).  For the parameters of this problem, De is more sensitive to a change in sr/Lt due to a change
in sr than due to a change in Lt.  Figure 10 indicates how De varies with respect to sr for fixed
values of sr/Lt.  Clearly the elastic modulus depends upon the fractional contact area and upon the
length of the unit surface element – a characteristic length associated with the surface structure.

5. EXAMPLE APPLICATION

Now consider the application of the elastic modulus to a problem that includes longitudinal
cracking.  The derivation of De was based upon an axisymmetric problem, yet the motivation for
this study was to correctly characterize the strain energy stored in a matrix when the problem is
modeled at a scale in which the details of the traction distribution have been homogenized – in
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particular to characterize the strain energy available for driving longitudinal cracking in the
matrix.

For demonstration, we again examine a concrete bond specimen [38].  In the actual bond
experiments, the radial components of the interface traction result from a complex mechanical
interaction, but the effects of the elastic modulus can be demonstrated with a simpler problem.
The specimen is subjected to radial interface tractions corresponding to the macroscopic
homogenous traction case.  Four axisymmetric finite element models of the specimen are
adopted with different idealizations.

In all four models a simplified representation of the longitudinal cracking in concrete is
adopted; this type of representation originated with the analytical work of Tepfers [27].  The
model presented here (for a FEM analysis) follows the approach of Rots [40], where the effects
of longitudinal cracking are incorporated into an “axisymmetric material model.”  Figure 11
shows the end-view of a specimen having three longitudinal cracks.  Each crack is idealized as
being planar with a process zone of infinitesimal thickness, and all of the cracks are assumed to
grow concurrently.   The process zone in the plane of the crack has a finite length and is referred
to as the cohesive crack  [41](Hillerborg et al. [1976]).  The nonlinear behavior of the process
zone is characterized by the following traction–crack opening relationship for the cohesive  crack

σcr = f t 1+ c1
ˆ w 3( )e− c2 ˆ w − 1+ c1( ) ˆ w e −c2[ ] (38)

where ˆ w  is the ratio of the opening displacement of the cohesive crack and the minimum crack
opening (wo) for which there is no traction across the crack, ft is the tensile strength of the
concrete, and c1 and c2 are model parameters.  For this example, we assume three longitudinal
cracks can develop, ft=4.69 MPa, wo=0.11 mm, c2=6.93, and c1 is selected so that the energy
required to create additional crack surface (the so called fracture energy) is 100 J/m2 – a typical
value for normal strength concrete.  This relationship is graphically depicted in Figure 12.

To incorporate the effects of longitudinal cracking in the context of an axisymmetric model the
hoop response of the “material model” is modified.  The matrix material between the
longitudinal cracks is assumed to be linear elastic (E=38700 MPa and ν=0.17) and in an
axisymmetric stress state; i.e., the hoop stress is assumed to be independent of θ and equal to the
traction across the cohesive crack.  The sum of the crack openings associated with a given point
(i.e., for fixed values of r and z) is divided by the circumference giving an additional contribution
to the “effective hoop strain.”

Four finite element models address different levels of idealization.  Figure 13 depicts the most
complex model – model 1.  The actual material interface geometry is explicitly modeled, and
uniform tractions are applied to inclined surfaces.  Model 2 omits the detail of the surface
structure adopting a cylindrical representation (as Figure 3b), with uniform tractions applied over
the same projected areas.  Models 3 and 4 represent the macroscopic idealizations, which have
uniform tractions over the whole interface (as Figure 3d).  These latter two models differ in that
model 4 includes the elastic modulus based upon Equation (37).

Figure 14 shows traction versus radial displacement results for the four models.  The peak
traction represents the traction at which the longitudinal cracks become unstable.  The
displacements are the average displacements for each model over the regions where the tractions
are applied.  The results suggest that for this example: (1) the effect of simplifying the surface
geometry (model 2 vs. model 1) is not significant, and (2) including the elastic modulus in the
macroscopic model allows the radial response to be more accurately reproduced (model 4 vs.
model 3).  The difference in the structural softening responses (model 1 vs. model 4) is partially
due to the position of the uniform traction distribution used in model 4; the uniform load was
distributed over the actual bonded length rather than “centering” unit surface elements with
respect to the ring loads.  Note that while De was derived for an uncracked solid, the improved
results for the macroscopic model extend beyond the initial elastic response.  The effect of the
change in contact area with material damage is examined in a forthcoming study [39] (Cox and
Yu 1998).



Draft: September 19, 2000, 3:30 PM

15 Cox/Yu

6. DISCUSSION AND CONCLUSIONS

For some applications where an axisymmetric reinforcing element is modeled at a scale where
details of the surface structure are omitted, the effects of this surface structure should still be
characterized.  The radial elastic response of an interface characterization was addressed in this
study.  The approach presented here for determining the corresponding elastic modulus of the
interface requires the homogenized traction distribution (1) to be “statically equivalent” and (2)
to produce the same amount of strain energy in the constituent materials.  An analytical solution
of the elasticity problems associated with the “actual” and homogenized traction distributions
(equivalent problems b and d) yields an analytical solution for the elastic modulus as a function
of the model parameters.  The solution presented assumes that the elastic strain energy stored in
the matrix is much greater than that stored in the reinforcing element, but the solution is easily
extended to the more general case by considering the corresponding “interior problem” of a
cylinder subjected to a periodic traction.  The analytical expression for De gives an interface
characterization of the local elastic response associated with the surface structure of the
reinforcing element.

While simplifying assumptions were made (e.g., axisymmetry, periodicity, homogeneous and
isotropic material properties) to obtain an analytical solution, the solution does provide
information on an elastic modulus for which experimental data is often lacking.  Results from the
solution have been applied in a specific interface model [39](Cox and Yu 1997), but several
qualitative observations that may have a broader application (e.g., for rough interface surfaces
with a characteristic wave length of roughness ) can also be made.

(1) For applications where the surface structure and corresponding traction distribution scale
with the diameter of the reinforcement, the elastic modulus is inversely proportional to the
diameter.

(2) Even when nonzero tractions exist over the entire unit surface element, the solution
justifies the use of an elastic modulus when the traction distribution is nonuniform and also
indicates that the effective contact length is less than the length of the unit surface element.

(3) For the example problem considered, the elastic modulus of the interface was proportional
to Young’s modulus but relatively insensitive to Poisson’s ratio.  The prediction of longitudinal
cracking by a model that idealized the interface tractions as being uniform was improved by
including the elastic modulus.

(4) If one associates the change in traction distribution with contact between the surface of the
reinforcing element and the matrix, the analytical solution shows the interface stiffness (a
measure of “smoothness” of the surface) should increase with an increase in the effective contact
area, and decrease with an increase in the characteristic length associated with the surface
structure (sr).

APPENDIX A

In this appendix, the reciprocal theorem of Betti and Rayleigh (see e.g., Sokolnikoff [31]1956)
is used to show that the average radial displacement (over the interface) of problems b through d
are the same when De →∞.  It is sufficient to consider problems b and d of Figure 3 with the
interface deformation of problem d neglected.  Betti and Rayleigh’s reciprocal work theorem
gives the following relationship

tnA∫ ur
ddA = σur

b dA
A∫ (A-1)
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where the superscripts b and d denote the particular problem.  Since both σ and ur
d  are constant

over the interface surface, and the interface traction distributions are “statically equivalent”
(Equations (11) and (3) relate the interface tractions), the above relationship can be expressed as

ur
d =

1
A

ur
b dA

A∫ (A-2)

That is, the average radial displacement of the interface is independent of the radial traction
distribution assuming that the traction distributions are “statically equivalent.”
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Figure 1.  A reinforcing element with surface structure

bridging a crack (after Goto [18]1971).
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Figure 3.  Idealizations for the radial response.  Revisions   reduce the size of each z-axis,
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Figure 5.  Finite element predictions of σrr for: (a) tn , (b) σ, and (c) tn–σ.
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Figure 13.  Model 1 of a concrete bond specimen.
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[JVC1]Assumption on the relative stiffness of the matrices is not applicable to the frp bar.

Page: 3
[JVC2] Hutchinson and Jensen [24] was deleted since their analysis of misfit did not address a variation of
the radius.

Page: 3
[JVC3]Do we want to say first order?  Hailing didn’t know how to interpret it.

Page: 6
[JVC4]Do we want to mention this?

Page: 11
[JVC5]Should we say apparent?

Page: 13
[JVC6]Correct word?


